Iron silicides at pressures of the Earth’s inner core
نویسندگان
چکیده
[1] The Earth’s core is expected to contain around 10 wt % light elements (S, Si, O, possibly C, H, etc.) alloyed with Fe and Ni. Very little is known about these alloys at pressures and temperatures of the core. Here, using the evolutionary crystal structure prediction methodology, we investigate FeSi compounds at pressures of up to 400 GPa, i.e. covering the pressure range of the Earth’s core. Evolutionary simulations correctly find that at atmospheric pressure the known non-trivial structure with P213 symmetry is stable, while at pressures above 20 GPa the CsCl-type structure is stable. We show that among the possible Fe silicides (Fe3Si, Fe2Si, Fe5Si3, FeSi, FeSi2 and FeSi3) only FeSi with CsCltype structure is thermodynamically stable at core pressures, while the other silicides are unstable to decomposition into Fe + FeSi or FeSi + Si. This is consistent with previous works and suggests that Si impurities contribute to stabilization of the body-centered cubic phase of Fe in the inner core. Citation: Zhang, F., and A. R. Oganov (2010), Iron silicides at pressures of the Earth’s inner core, Geophys. Res. Lett., 37, L02305, doi:10.1029/2009GL041224.
منابع مشابه
Melting of Fe - alloys and the thermal structure of the core
11 The temperature of the Earth’s core has significant implications in many areas of 12 geophysics, including applications to Earth’s heat flow, core composition, age of the 13 inner core, and energetics of the geodynamo. The temperature of the core at the inner 14 core boundary is equal to the melting temperature of the core’s Fe-rich alloy at the inner 15 core boundary pressure. This chapter ...
متن کاملCompositional instability of Earth’s solid inner core
[1] All models that invoke convection to explain the observed seismic variations in Earth’s inner core require unstable inner core stratification. Previous work has assumed that chemical effects are stabilizing and focused on thermal convection, but recent calculations indicate that the thermal conductivity at core temperatures and pressures is so large that the inner core must cool entirely by...
متن کاملSe p 20 04 The axial ratio of hcp iron at the conditions of the Earth ’ s inner core
We present ab initio calculations of the high-temperature axial c/a ratio of hexagonalclose-packed (hcp) iron at Earth’s core pressures, in order to help interpret the observed seismic anisotropy of the inner core. The calculations are based on density functional theory, which is known to predict the properties of high-pressure iron with good accuracy. The temperature dependence of c/a is deter...
متن کاملTowards evaluating the viscosity of the Earth’s outer core: An experimental high pressure study of liquid Fe-S (8.5 wt.% S)
[1] In-situ high pressure viscosity measurements, using synchrotron X-ray radiography, have been carried out on liquid Fe-S (8.5 wt.% S) at pressures up to 6 GPa and at 1823 K. Here we show that (i) the effect of pressure on the isothermal viscosity is substantial, with an apparent activation volume of 5.8 cm/mol; and (ii) viscosity is constant along the pressure dependent melting boundary. Ass...
متن کاملTemperature of the inner-core boundary of the Earth: Melting of iron at high pressure from first-principles coexistence simulations
The Earth’s core consists of a solid ball with a radius of 1221 Km, surrounded by a liquid shell which extends up to 3480 km from the center of the planet, roughly half way toward the surface the mean radius of the Earth is 6373 km . The main constituent of the core is iron, and therefore the melting temperature of iron at the pressure encountered at the boundary between the solid and the liqui...
متن کامل